Оконная розетка – простой способ преобразования солнечной энергии в электрическую

Принцип работы солнечной батареи для дома: устройство, схема, эффективность

Оконная розетка - простой способ преобразования солнечной энергии в электрическую

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии.

В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию.

Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца.

В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный.

Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века.

Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций.

Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины.

Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение.

Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

Недостатки:

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час.

В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Как устроена солнечная батарея, расскажет наше видео.

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

Оконная розетка - простой способ преобразования солнечной энергии в электрическую

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Далее я расскажу о том, как работает солнечная электростанция, из каких элементов состоит, кому подойдет и как её подключить. Кроме того, поделюсь реальной статистикой выработки одной панели.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).

  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать.

    В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью альтернативных источников энергии по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от солнечных коллекторов, которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт.

Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает.

В этом случае можно подключить зеленый тариф и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее.

Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца.

 В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.
Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности.

Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.
В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.

    
А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.

5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный.

Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе,  то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует  закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

Солнечная энергия. Преобразование солнечной энергии

Оконная розетка - простой способ преобразования солнечной энергии в электрическую

Людьми солнечная энергия используется в самых разных формах, для отопления и охлаждения помещений, производства питьевой воды дистилляции, дезинфекции, освещения, производства горячей воды и приготовления пищи. Способы использования солнечной энергии ограничены только человеческой изобретательностью.

Солнечные технологии бывают пассивными или активными, в зависимости от способа захвата энергии, которая затем преобразуется, и распространятся.

Активные солнечные технологии

К активным солнечным технологиям относят фотоэлектрические панели и солнечные тепловые коллекторы.

Пассивные солнечные технологии

Пассивные методы включают ориентацию здание к Солнцу, чтобы получать максимальное количество дневного света и тепла, а также выбор материалов с нужными тепловыми свойствами.

Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, с помощью которых солнечная энергия преобразуется в электрическую или тепловую.

Широко известен тот факт, что солнце излучает огромное количество энергии.

По приблизительным подсчётам авторитетных международных организаций количество энергии, потребляемое сегодня человечеством, колеблется на уровне 245 миллионов баррелей нефтяного эквивалента в сутки, а интенсивность потока солнечного излучения у поверхности Земли, при перерасчёте на всю поверхность, составляет 1,74*Е+17 Вт.

То есть, Солнце отправляет нам энергии приблизительно в 10 500 раз больше, чем мы сегодня потребляем.

Солнечная энергия не исчерпаема, поэтому очевидно, что такого количества энергии нам хватит на сотни и даже тысячи лет вперед! С учётом всё большего понимания экономических, экологических и прочих проблем, связанных с использованием традиционных энергоресурсов (уголь, нефть, природный газ), интерес к солнечной энергетике с каждым днем возрастает.

Солнечная энергия, разделение по направлениям

  • гелиотермальная энергетика, где нагрев теплоносителя для отопления и прочих нужд происходит при помощи прямого преобразования солнечного излучения в тепловую энергию
  • получение электроэнергии с помощью тепловых машин, нагрев рабочего тела в которых, происходит за счет солнечной энергии
  • Солнечная энергия преобразуется в электроэнергию с помощью солнечной панели (солнечной батареи)

Солнечные панели

Под солнечной панелью понимают набор, соединённых между собой фотомодулей. Фотомодуль (далее модуль) в свою очередь состоит из фотоэлементов или фотоэлектрических преобразователей (ФЭП).

   Из чего состоит солнечная панель

Отдельный фотоэлектрический преобразователь — это полупроводниковый прибор, преобразующий энергию фотонов (энергию света) в электрическую энергию. Преобразование энергии происходит на уровне атомного строения тела.

Наиболее распространённый материал для изготовления ФЭП это кремний.

Каждый отдельный ФЭП способен вырабатывать напряжение сравнительно малой величины (около 0,5 В), поэтому отдельные элементы собирают в модули, а модули в панели.

В зависимости от задачи энергоснабжения используются различные схемы коммутации солнечных панелей.

Например, для зарядки мобильного телефона одна, для работы автономного освещения другая, для работы электросети здания и работы с «зелёным тарифом» третья и т.д.

(«зелёный тариф» — это специальный тариф, по которому государством закупается электрическая энергия, произведенная на объектах электроэнергетики, которые используют альтернативные источники энергии).

В результате преобразования энергии света солнечная панель на своём выходе генерирует постоянное электрическое напряжение для работы в системах с номинальным напряжением, как правило, 12, 24 или 48 вольт.

   Преобразование постоянного напряжения в переменное

Хотя внутренние электронные схемы многих потребителей электроэнергии (телевизор, компьютер, музыкальный центр и другие) работают на постоянном напряжении (и для работы имеют встроенные блоки питания), всё же на сегодняшний день, в обычной электрической сети переменное напряжение, и все приборы адаптированы для питания от сети с переменным напряжением. 220 вольт для однофазной сети, либо 380 вольт для трёх фазной сети. Поэтому одних солнечных панелей, с постоянным напряжением, для полноценного обеспечения электроэнергией не достаточно. Дополнительно необходим инвертор — электронное устройство, которое преобразовывает постоянное напряжение в переменное.

Солнечная панель вырабатывает электроэнергию при попадании не её поверхность света, то есть, в тёмное время суток солнечная панель отдыхает.

Но, как правило, нам необходима электроэнергия круглые сутки, поэтому в систему солнечных панелей вводиться блок аккумуляторных батарей.

По своему назначению он выполняет ту же функцию, что и аккумулятор в автомобиле или батарейка в мобильном телефоне, накапливает электроэнергию в момент её излишка, и отдает в момент её нехватки.

Заряд аккумуляторной батареи от солнечной панели, требует соблюдения определённого алгоритма. Для управления процессом зарядки аккумуляторов, используется электронное устройство – контроллер заряда.

Типовая схема подключения солнечных панелей

Для уменьшения капитальных вложений в систему на солнечных панелях, необходимо использовать электрооборудование с высокой энергоэффективностью.

При выборе бытовых электроприборов необходимо обращать особое внимание на класс энергоэффективности.

Например, для освещения можно использовать светодиодные лампы, которые в 10 раз эффективнее ламп накаливания, и более чем в 2 раза эффективнее энергосберегающих люминесцентных ламп.

   Схема подключения солнечных панелей

Максимальную эффективность солнечные панели имеют при падении солнечных лучей перпендикулярно к поверхности модуля. Так как солнце все время перемещается по небу, для эффективного использования панели возможно применение устройств слежения и поворота панели к солнцу.

При установке солнечных панелей, необходимо знать основные характеристики ФЭП и особенности работы системы на солнечных панелях. В зависимости от материала и технологии изготовления, ФЭП отличаются коэффициентом полезного действия (КПД), устойчивостью к повышению температуры, габаритами, и конечно же стоимостью.

Сегодня оптимальными для применения и самыми распространёнными являются ФЭП из моно- и поли- кристаллического кремния, хотя есть и другие варианты решения (панели на аморфном кремнии, тонкоплёночные панели, нанокристаллические панели и другие).

   Моно или поликристалл

Применительно к солнечной панели, КПД — это параметр, который показывает какая часть энергии светового потока преобразовывается в электрическую. Этот параметр будет влиять на суммарную площадь панелей, и как следствие на площадь, которая будет покрыта панелями.

Например, если КПД солнечной панели составляет 12 % и освещается световым потоком интенсивностью 1100 Вт/м2, то выходная мощность этой панели составит 1100 Вт/м2 * 0,12 = 132 Вт с 1 м2 площади солнечной панели.

Устойчивость ФЭП к повышенной температуре подразумевает сохранение солнечной панелью выходных характеристик (напряжения, тока) с увеличением температуры.

Рабочие параметры панели рассчитываются при температуре окружающей среды 25°С, с увеличением этого параметра электрические характеристики и срок службы ФЭП изменяются.

И если мы говорим о продолжительном сроке эксплуатации в условиях с реальной температурой выше, чем 25°С, то этим параметром пренебрегать нельзя.

К особенностям работы системы также относится место и способ установки панелей. Эти детали влияют на количество оборудования и интенсивность солнечного света для конкретного модуля.

Кроме того, количество и модель устройств в системе солнечного электроснабжения, зависит от назначения объекта и потребителя, которому необходимо обеспечить электроснабжение.

Например, могут быть варианты: жилой дом, производственный объект, сельскохозяйственный объект, объекты, требующие энергии больше в дневное или ночное время.

С учётом всех перечисленных факторов необходимо иметь в виду, что установка и расчёт системы солнечных панелей должна проводиться специалистом.

Основные преимущества солнечных панелей

  • Высокая надёжность. Конструкция на солнечных панелях не имеет механических, движущихся частей, вследствие чего имеет высокий запас надёжности, что подтверждается использованием в местах, где ремонт практически не возможен – космических системах, и пр.
  • Минимальные эксплуатационные расходы. После монтажа солнечные панели, не требуют большого внимания, регламентных работ и сервисного обслуживания. Это позволяет использовать панели в труднодоступных местах, где обслуживание либо дорого, либо проводить нельзя.
  • Экологическая чистота. При работе солнечных панелей нет никаких вредных выбросов и отходов. Солнечные панели работаю бесшумно.
  • Срок эксплуатации. На сегодняшний день, срок службы солнечных панелей доведён до 20-25 лет.
  • Простота установки. Монтаж системы достаточно прост. Изменение выходной мощности достигается простым добавлением или демонтажем модулей. Другими словами, есть возможность постепенного увеличения мощности по мере необходимости и наличия финансовой возможности.

По известным причинам, интерес к солнечным панелям растёт с каждым годом, отсюда и старание производителей обеспечить рынок. Как отмечают аналитики, сегодня объёмы производства не отвечают потребностям, и хотя производственные мощности увеличиваются с каждым годом, стоимость солнечной панели экономически интересна пока не во всех странах.

Производители стремятся оптимизировать стоимость затрат на изготовление солнечных панелей, а возрастающий спрос способствует сближению процессов производства и покупки.

На практике, при определении оценочной стоимости солнечной панели, говорят о стоимости за 1 Ватт электрической мощности.

Понимая, что если 1 Ватт стоит условно 2 USD, то панель мощность 10 Ватт стоит около 20 USD, а панель мощностью 100 Ватт около 200 USD.

Стоимость солнечной панели постоянно уменьшается, с динамикой 50 USD/Ватт в 70-е годы, до 1,5 USD/Ватт в наши дни. Очевидно, что стоимость солнечной панели будет продолжать уменьшаться.

Так как вся система на солнечных панелях состоит не только из самих панелей, а еще содержит устройства, упомянутые выше, то и стоимость всей установки выше.

Так как с уменьшением мощности потребителей, уменьшается мощность и стоимость системы электроснабжения на солнечных панелях, эффективно рассматривать работу солнечных панелей с энергосберегающим оборудованием, например применять светодиодные лампы для освещения, тепловые насосы для отопления и индукционные печи для приготовления пищи.

Развитие солнечной энергетики

Как уже отмечалась, цифры отражающие сегодня характеристики развития солнечной энергетики стабильно растут. Солнечная панель давно перестала быть термином узкого круга технических специалистов и сегодня о солнечной энергетике не только говорят, но и получают прибыль от реализованных проектов.

В сентябре 2008 года было завершено строительство солнечной электростанции расположенной в Испанском муниципалитете Ольмедилья-де-Аларкон. Пиковая мощность электростанции Olmedilla достигает 60 МВт.

Солнечная станция Olmedilla

В Германии эксплуатируется солнечная станция Waldpolenz, которая находится в Саксонии, в районе городов Брандис и Бенневиц. Пиковая мощность этой станции составляет 40 МВт, благодаря чему она входит в число крупнейших солнечных электростанций мира.

Солнечная станция Waldpolenz

Неожиданно для многих, хорошими новостями начала радовать и Украина. Согласно данным ЕБРР, Украина уже в ближайшее время может занять место лидера среди экологически чистых экономик Европы, особенно в отношении рынка солнечной энергии, который является одним из наиболее перспективных рынков возобновляемых источников энергии.

Смотрите также по теме солнечная энергия:

   Альтернативные источники энергии в наши дни.

   Принцип работы солнечных батарей. Их устройство.

Солнечная электростанция на дом 200 м2 своими руками

Оконная розетка - простой способ преобразования солнечной энергии в электрическую

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно.

Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик.

Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.
Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее.

Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов. Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что. Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети.

Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому.

Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку.

Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа.

Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор. На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности.

То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети. Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации.

Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора.

Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть.

В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна.

Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор.

Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии.

В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах.

Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Оконная розетка - простой способ преобразования солнечной энергии в электрическую

Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения.

Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями.

Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

Принцип работы солнечной батареи

Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом.

Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое.

Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния.

Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall – аккумулятор для солнечных панелей на 7 КВт – и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно.

Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону.

Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут.

Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели.

В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом.

Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты.

Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

  • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
  • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
  • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.