Автоматическое управление вентиляцией в помещении

Автоматика для вентиляции: как выбрать, режимы управления и монтаж

Автоматическое управление вентиляцией в помещении

Автоматизация технических процессов сегодня коснулась практически всех областей человеческой деятельности, как на производстве, так и в быту. Не стали исключением и вентиляционные системы, для управления которыми разработаны специальные устройства, позволяющие максимально оптимизировать их работу.

Что такое автоматика для вентиляционных систем

Сегодня автоматические системы управления вентиляцией представлены большим комплексом всевозможных технических приборов.

Все они, начиная от термостатов, и заканчивая сложными компьютеризированными модулями, предназначаются для облегчения управления и контроля над работой принудительных вентиляционных систем.

Разнообразие оборудования даёт возможность решения задач по обеспечению автоматизации на любом объекте, вне зависимости от его характеристик и назначения.

Исходя из эксплуатационно-технических требований, возможен различный подход к изготовлению пультов автоматизированного управления вентиляцией:

  • На одних объектах можно обойтись стандартными модулями, выпускаемыми в виде шкафов с установленными в них приборами управления.
  • В других случаях монтажникам приходится вручную собирать комплексы, адаптированные под сложные приточно-вытяжные вентиляции с учетом конкретных задач.

Разница в подходах обусловлена необходимостью обеспечить эффективное функционирование вентиляции и созданием комфортных условий для жильцов или работников во внутренних помещениях здания, вне зависимости от времени года и внешних погодных условий.

Важно! В больших торгово-развлекательных комплексах, в учебных и административных зданиях, на больших производствах установка оборудования для автоматизации вентиляционных систем позволяет устранить возможные сбои в работе и минимизировать влияние человеческого фактора.

Управление работой вентиляционных механизмов происходит с помощью комплекса датчиков, установленных внутри помещений. Одни из них действуют по принципу термостата – с повышением температуры внутри здания автоматически включаются вентиляторы, чем обеспечивается приток свежего воздуха.

Рекомендуем ознакомиться:  Проверка дымоходов и вентиляционных каналов

Современные автоматизированные системы оснащаются элементами искусственного интеллекта и более сложными контрольно-измерительными приборами.

Конструктивно подобные модули состоят из трех групп узлов:

  • Датчики – приборы, передающие информацию об окружающей среде – термостаты, измерители влажности воздуха, газоанализаторы. Собранные данные они передают в анализирующий центр.
  • Центр управления собирает и обрабатывает информацию, поступающую от контрольных датчиков, и на основании полученного анализа выдает команды механизмам управления на изменения режима работы.
  • Исполнительные механизмы – узлы, осуществляющие механические действия. К этой группе относятся: преобразователь частоты вращения вентилятора, сервоприводы для регулировки положения задвижек и т.д.

Центры управления анализируют соотношение в воздухе кислорода и углекислого газа, процент влажности, при необходимости выдавая команду проветрить помещение. При обнаружении возгорания высокоинтеллектуальная электроника самостоятельно блокирует приток свежего воздуха, препятствуя распространению пожара.

В обычном режиме автоматика обеспечивает слаженное функционирование всех узлов и механизмов вентиляционных систем без привлечения оператора.

Компьютеризированные модули передают информацию о режиме работы, о показаниях датчиков на единый пульт управления. Это позволяет оператору, при необходимости, корректировать работу автоматики, и менять настройки в удаленном режиме.

Обратите внимание! Благодаря использованию автоматики контролировать работу и заниматься обслуживанием вентиляции с установленной автоматикой, может гораздо меньшее количество технических специалистов.

В зависимости от конкретной ситуации, используется один из 3-х режимов управления приборами:

  • Ручной. Управление вентиляцией осуществляет оператор, находящийся непосредственно в щитовой комнате, либо за удалённым пультом управления.
  • Автономный. Аппаратура работает в соответствии с установленными настройками, вне зависимости от прочих инженерных систем, установленных в здании.
  • Автоматический. Приборы управления интегрированы в общее управление всеми инженерными комплексами здания. Работа вентиляции синхронизирована с прочими приборами и датчиками, расположенными в доме – например, с пожарной сигнализацией, иными аварийными датчиками.

Рекомендуем ознакомиться:  Как почистить вытяжку в домашних условиях

Таким образом, автоматизированный комплекс исполняет роль управляющего контрольного центра. Он запускает вентиляцию в работу, останавливает её, обрабатывает показания датчиков и устанавливает нужный режим в зависимости от температуры, влажности и прочих параметров.

Основные задачи автоматики для вентиляции

Поскольку на современном рынке представлено большое количество всевозможных технических устройств для автоматизации вентиляции, набор их функций также чрезвычайно широк.

Основные функции модуля управления, оснащенного элементами электронного интеллекта:

  • Поддержание заданных параметров микроклимата внутренних помещений – температуры и влажности воздуха, насыщенности углекислым газом и т.д.
  • Возможность для оператора удаленного управления вентиляторами, дистанционного их включения и отключения.
  • Осуществление автоматизированного контроля над датчиками работы всех узлов и агрегатов вентиляционного оборудования.
  • Самостоятельный перевод оборудования в летний или зимний режим.
  • Контроль над уровнем загрязнения фильтрующих устройств с функцией подачи сигнала о необходимости прочистки.
  • Открывание и закрывание заслонок воздуховодов, регулировка производительности приточных и вытяжных вентиляторов.
  • Прекращение подачи свежего воздуха при срабатывании пожарной сигнализации.
  • Отключение электропитания при аварийных ситуациях – резких скачках или понижении напряжения. Это позволяет предотвратить выход из строя приборов, датчиков и отдельных узлов вентиляционной системы.

Обратите внимание! Точный перечень функций, которыми снабжен тот или иной автоматизированный модуль, следует узнавать у продавца или производителя.

Дополнительные функции

Современные производители для максимально полного удовлетворения запросов покупателей, уделяют особое внимание не только надежности выпускаемого оборудования. Немаловажным фактором в конкурентной борьбе за потребителя является оснащение продукции как можно большим дополнительным функционалом.

Сегодня стали доступны такие высокоинтеллектуальные функции, как:

  • Подключение вентиляции к единому электронному диспетчеру управления «умный дом».
  • Управление настройками через интернет-приложения, при помощи Wi-Fi и блютуз.

Оснащенная современным функционалом автоматическая аппаратура становится понятной и простой в управлении, подобно прочей бытовой технике.

Как выбрать и установить

При выборе аппаратуры управления вентиляционными устройствами, особое внимание следует уделить эксплуатационно-техническим характеристикам.

Важную роль при правильном подборе техники играют сложность системы вентиляционных ходов, количество помещений и их внутренние объемы, а также количество людей, которые находятся в помещении.

Следует отдавать предпочтение продукции компаний, зарекомендовавших себя на рынке электроники.

При этом важно узнать, каковы гарантийные обязательства, предусмотрено ли бесплатное сервисное обслуживание. Чем выше уровень качества аппаратуры, тем выше ее стоимость. Однако, не стоит жалеть денег на качественную технику, поскольку она окупит все расходы многолетней безаварийной службой.

Идеальным вариантом будет найти такой электронный модуль управления, который совмещал в себе качество сборки, большое количество функций и доступную стоимость. Как показывает практика, подобная аппаратура сегодня встречается среди продукции новых компаний, только выходящих на мировой рынок.

Это важно! Установкой и подключением систем автоматизации вентиляций должны заниматься только техники со специальными допусками.

Прошедшие необходимую подготовку специалисты устанавливают аппаратуру в полном соответствии с требованиями технического регламента.

При самостоятельном подключении возможны ошибки, способные привести к выходу из строя, как отдельных узлов, так и всего оборудования. Также самостоятельно смонтированные комплексы управления не подлежат сервисному обслуживанию, и при поломке покупателю придется ремонтировать их за свой счет.

Источник: https://TopVentilyaciya.ru/ventilyaciya/avtomatika-sistem-ventilyatsii.html

Автоматическое управление вентиляцией в помещении – Учебник сантехника

Автоматическое управление вентиляцией в помещении

Верный воздухообмен в помещении формирует комфортные условия не только для людей, но всех предметов и растений в нем.

Добиться этого ручным методом тяжело, по причине того, что вы не сможете круглосуточно следить за показаниями устройств. Время от времени вам будет через чур жарко, позже холодно, после этого душно и не хватать воздуха.

Решить такие неприятности разрешает лишь автоматическое управление вентиляцией, о которой и поболтаем в статье.

Основные преимущества

Применение автоматических средств управления воздухообменом в помещении позволяет снизить затраты на его охлаждение и нагрев практически на 20%.

Это достаточно внушительное число, исходя из этого мы рекомендуем обратить внимание на наши советы.

Основными задачами таких систем регулирования вентиляцией есть поддержка заданных климатических параметров и управление ними (читайте кроме этого статью ‘Опробование вентиляции: тестируемые величины и нормативные требования’).

Кроме этого вы сможете:

  • регулировать частоту вращения вентилятора,
  • защитить водяного калорифера от мороза,
  • поддержать заданные параметры воздуха,
  • выводить на экран либо индикацию степень загрязнения фильтров.

Из чего состоит система автоматической вентиляции

Как и любое техническое устройство, она содержит в себе основные элементы, каковые оказывают помощь ей снабжать стабильную работу. Рассмотрим их детальнее:

Датчики
  1. Употребляются для получения информации о состоянии регулируемого объекта в настоящем времени.
  2. Вы сможете с их помощью осуществлять обратную связь с системой регулирования объектом по каждому параметру, а также, температуре, давлении, влажности.
  3. При выборе датчиков необходимо брать во внимание условия их эксплуатации, диапазон работы и требуемую точность измерений.

Их цена возможно большой, исходя из этого поразмыслите перед их установкой об их количестве.

РегуляторыЯвляются одними из основных элементов системы автоматизации, каковые снабжают управление аккуратными механизмами в зависимости от показаний разных датчиков.
Аккуратные механизмыОни являются устройства различного типа:

  • электрические,
  • механические,
  • гидравлические.

Сейчас рассмотрим контроллеры управления вентиляцией:

  • наружными – устанавливают на подветренной стороне одного из углов здания, отойдя от земли 2/3 его высоты,
  • комнатными – монтаж возможно проводить своими руками в месте нейтральном от холода и тепла на высоте 1,5 м от поверхности пола,
  • канальными (для определения температуры воздуха в воздуховоде) – устанавливаются перпендикулярно потоку,
  • накладными на трубопровод (определяют температуру его поверхности).
  1. Устройства для определения влажности изготавливают комнатного и канального выполнения. Это блок с электронным прибором, который измеряет относительную влажность и преобразует после этого данные в электронный сигнал.

Устанавливать таковой датчик следует в месте, где имеется постоянная температура окружающей среды и его скорость движения.

Совет: не размещайте его рядом с отопительными устройствами, вентиляционными потоками, раскрывающихся окон, и защитите устройство от прямых солнечных лучей. Не рекомендуем создавать монтаж устройств в нечистой либо агрессивной среде.

  1. Для наблюдений за давлением применяют аналоговые устройства и реле, каковые смогут измерять его и в одной точке, и по разности параметров в двух точках.

Инструкция требует выбирать место для монтажа так, дабы он не подвергалось вибрациям.

Совет: располагайте датчик в пространстве в соответствии с технической документацией.

  1. За наблюдением за скоростью – нужны для измерения скорости движения среды в воздуховоде. После этого полученный сигнал преобразуется в электрический, по окончании чего в вычислительном блоке рассчитывается нужный расход с учетом сечения канала.

Элементы автоматической системы вентиляции

В стандартной комплектации щит управления вентиляцией снабжает:

  • регулирование температурного диапазона,
  • управление воздушной заслонкой,
  • регулирование работой приточного вентилятора, а также скорости,
  • пуск вентиляционной установки.

При изготовлении щитов учитывается не только уровень качества сборки, но и удобство эксплуатации изделия. К примеру, простые неоновые лампы заменяются современными светодиодными матрицами, снабжающие броское и равномерное свечение, и не имеют подсветки, в то время, когда лампы отключены.

В качестве материала может употребляться металл и пластик, имеющий защиту класса IP65. Последние в большинстве случаев устанавливают в местах, где имеется высокие требования к дизайну.

Сердцем любой системы автоматизации есть электрический щит, в котором в большинстве случаев устанавливают систему управления вентиляцией. Самая несложная складывается из выключателя с индикатором, давая возможность включать и выключать вентилятор.

Но значительно чаще автоматика руководит:

  • воздушным клапаном,
  • отслеживает чистоту фильтра,
  • при понижении температуры наружного воздуха, поступающего в воздуховоды, включает калорифер.

Исходя из этого для облегчения ее работы нужна установка многих устройств, например, термостатов, гигростатов, датчиков давления.

При выборе типа вентиляции у себя в доме либо квартире, имейте в виду, что она возможно:

  • приточной – работает лишь на всасывание наружного воздуха и передачу его по воздуховодам в помещения,
  • вытяжной – употребляется лишь для вывода отработанного воздуха из комнат наружу,
  • приточно-вытяжной – может раздельно делать забор наружного воздуха и выводить отработанный, и работать на приток и оттекание в один момент.

Совет: не торопитесь бежать в магазин за элементами той либо другой системы, лучше все пристально вычислите, дабы не платить лишние деньги за ненужные устройства.

Приточно-вытяжная система вентиляции

Она получается при объединении двух типов систем – приточной и вытяжной. Не смотря на то, что он и громоздкая, и более сложная в монтаже, но как раз с ее помощью вы сможете самым действенным образом наладить воздухообмен в помещении. Вследствие этого данная система и пользуется громадной популярностью.

Система управления вентиляцией позволяет без проблем нагнетать свежий воздушное пространство в помещения и удалять отработанный. Практически в считанные минуты такое оборудование всецело обновляет воздушное пространство кроме того в громадных по площади производственных помещениях.

Наряду с этим мощность установки в обязательном порядке шепетильно подбирается по подаче и оттоку воздушных масс, дабы входило и выходило однообразное количество в определенный момент времени. В случае если этого не сделать, в помещении появится сквозняк, и эффект «рукоплещущих дверей», в то время, когда покинутые незакрытыми двери сами захлопываются с сильным шумом.

Мы рекомендуем при установке в помещении приточно-вытяжной вентиляции не включать ее на полную мощность. Достаточно приток либо вытяжку.

В случае если запустить вытяжную вентиляцию, свежий воздушное пространство начнет поступать естественным методом через щели в дверях и окнах. При запуске приточной вентиляции в помещении начинает создаваться избыточное давление, что заставляет отработанный воздушное пространство покидать его через форточки, фрамуги и окна.

Вывод

Установка автоматической системы вентиляции в помещении может ‘настойчиво попросить’ определенных знаний и навыков. В большинстве случаев это относится установки и подключения датчиков и щита управления, от которых и зависит ее обычная работа (см.кроме этого статью ‘Автоматика для вентиляции: функции, особенности, возможности’).

в данной статье окажет помощь отыскать вам дополнительную данные по данной тематике.

Загрузка…

Источник: https://partner-tomsk.ru/santehnika/ventilyatsiya/avtomaticheskoe-upravlenie-ventilyatsiey-v-pomeshhenii

Автоматизация общеобменной вентиляции

Автоматическое управление вентиляцией в помещении

Вентиляция: Обмен воздуха в помещениях для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимого микроклимата и качества воздуха в обслуживаемой или рабочей зоне при средней необеспеченности 400 ч/год – при круглосуточной работе и 300 ч/год – при односменной работе в дневное время (СП 60.13330.2012.)

Вентиляция бывает приточной и вытяжной.

Приточная – это вентиляция, при которой осуществляется подача очищенного свежего воздуха заданной температуры и влажности приточными установками и центральными кондиционерами.

Вытяжная – это вентиляция, при которой осуществляется удаление воздух из помещения с помощью вытяжных вентиляторов.

Приток и вытяжка должны быть равны по объему (исключением является противодымная вентиляция – когда на путях эвакуации создается подпор приточного воздуха). Внутри объекта приточный и вытяжной воздух распределяются по неравномерно.

Например, в комнате приготовления пищи, в сан узлах, в комнатах сбора мусора баланс должен быть отрицательный (вытяжка больше притока), в чистых помещениях, например, кабинетах, переговорных, в чистых комнатах (микроэлектроника, фармацевтика) – напротив, положительный (приток больше вытяжки).

Тогда запахи и пыль не будут распространяться по всем площадям и будут локализованы.

Если неприятные запахи и грязь распространяются по всем помещениям, это значит, что балансовые соотношения нарушены. Чаще всего это происходит по следующим причинам – ошибка при проектировании системы, засорение вентиляционных каналов, неправильная работа системы автоматизации.

Кратность воздухообмена —определяется числом обменов воздуха в помещении за единицу времени.

Она равняется отношению объема воздуха, который подается в помещение в единицу времени, к объему помещения.

Кратность воздухообмена может быть переменной величиной, она зависит от количества людей в помещении, температуры, влажности и т.п. Управление кратностью должно осуществляться в автоматическом режиме.

Кроме обеспечения комфортных условий в помещениях, автоматизации вентиляционных систем:

  • Осуществляет контроль и управление работой агрегатов вентиляции, это до минимума сокращает необходимость вмешательства пользователя;
  • Обеспечивает поиск и индикацию неисправностей оборудования;
  • Измеряет параметры электрической цепи оборудования, режимов его работы, и в случае их отклонения защищает его от возможных коротких замыканий, перегрузок, перегревов и замерзания. В качестве примера приведено фото разорванного калача калорифера вентиляционной системы, автоматика не обеспечила циркуляцию теплоносителя в ночной период времени;
  • Осуществляет контроль состояние воздушных фильтров, информирует службу эксплуатации о предстоящем техобслуживании;
  • Управляет температурой воздуха, влажностью, уровнем загазованности в отдельных помещениях объекта и в целом;
  • Обеспечивает работы по расписанию: недельный, суточный или циклический режим работы таймером без вмешательства человека;
  • Позволяет управлять основными возможностями системы вентиляции с единого пульта или удаленно.

Процесс работы не автоматизированной системы вентиляции выглядит следующим образом: в помещение стало душно, оператор поднимает производительность системы вентиляции, в помещении стало холодно, оператор снижает производительность вентиляционной системы.

Данный пример не имеет ничего общего с работой современных систем вентиляции, но иллюстрирует основную задачу системы автоматизации, которая должна выполняться – создание комфорта для посетителей здания или обеспечение заданных условий для производства.

Общий алгоритм работы системы. Основные параметры воздуха внутри помещения и на улице постоянно контролируются, измеряется температура воздуха, влажность, наличие в воздухе посторонних газов и примесей, концентрация СО2 и т.д. Данные поступают на микропроцессорный контроллер и анализируются.

При выходе значений за определенный интервал (эти значения задаются при настройке системы, они называются «уставка»), контроллер передает управляющий сигнал на запуск исполнительных механизмов, вентиляторов, охладителей, нагревателей, осушителей, срабатывают клапана и заслонки, управляющих сечением воздуховодов и пр.

При возвращении значений параметров в заданный диапазон, контроллер отправляет корректирующие сигналы.

Необходимость технического обслуживания определяется по косвенным параметрам, по падению давления или снижению скорости воздушных потоков в воздуховодах, энергопотреблению электрооборудования, сравнению параметров системы со средними для данного режима работы. Информация, выводимая оператору, сообщает о необходимости замены масла в компрессоре, замене фильтров, чистке воздуховодов и т.д.

Автоматика систем вентиляции состоит из следующих элементов:

  • Датчики и преобразователи;
  • Регуляторы;
  • Исполнительные механизмы;
  • Щиты автоматизации (контроллеры, управляющие контакты).

Датчики и преобразователи

Датчики – это элементы систем автоматизации вентиляции, служащие для получения информации о реальном состоянии регулируемого объекта. С их помощью осуществляется обратная связь системы регулирования с объектом по следующим параметрам: температуре, давлению, влажности и т.д.

Для того, чтобы информация с датчика передавалась системе в виде цифрового кода каждый датчик снабжается преобразователем.

Оптимальные места установки датчиков указываются в прилагаемых к ним инструкциях.

Датчики температуры могут быть для внутреннего и наружного применения; накладными на трубопровод (для контроля температуры поверхности трубопровода) или канальными (для измерения температуры воздуха в воздуховоде). Внутри помещений датчики температуры устанавливаются в нейтральных, относительно источников тепла или холода местах, снаружи здания в местах где датчик будет защищен от ветра или прямого попадания солнечных лучей.

Датчики влажности представляют собой блок с электронным прибором, измеряющим относительную влажность, и преобразующий данные в электронный сигнал. Бывают наружного и внутреннего исполнения. Устанавливаются в местах со стабильными условиями влажности, не допускается установка их вблизи радиаторов отопления, блоков кондиционеров, у источников влаги.

Датчики давления подразделяются на реле давления (механическое измерение перепада давлений и электрическое преобразование) и аналоговые датчики давления (преобразование давления сразу в электрический сигнал, например, с помощью пьезо-элементов). И те, и другие применяются для измерения давление как в одной точке, так и разность давлений в двух точках.

И внешние и внутренние датчики желательно устанавливать по два и более, например, с северной и с южной стороны здания. В современных системах, все внешние климатические датчики объединяют в единую метеостанцию.

Датчики потока измеряют скорость движения жидкости или газа в трубопроводе или воздуховоде. Расход жидкости вычисляется по формуле внутри процессорного блока исходя из разности давлений и других параметров (температуры, сечения трубопровода, плотности).

Исполнительные устройства

Исполнительные устройства следует рассматривать в привязке к управлению приводом.

Это важный элемент в таком процессе как управление вентиляцией, на долю которого выпадает роль осуществления приводной части автоматизации. Эти механизмы могут быть как электрическими, так и гидравлическими.

В качестве исполнительных устройств могут выступать клапаны, заслонки и частотные регуляторы.

Регуляторы

Регуляторы – это один из основных элементов системы автоматики для вентиляции, обеспечивающий управление исполнительными механизмами по показаниям различных датчиков.

По функциональному предназначению эти элементы вентиляционных систем подразделяются на регуляторы скорости и регуляторы температур.

Регуляторы скорости бывают однофазными и трёхфазными (также, как и двигатели). Также они бывают с плавным или ступенчатым регулированием, при этом выбор способа регулирования зависит от мощностей вентиляторов.

Наиболее современным и экономичным является способ скорости вращения насосов и вентиляторов с помощью преобразователей частоты (ПЧ).

Несмотря на высокую стоимость, ПЧ экономически оправдывают себя уже на двигателях с мощностью более 1 кВт.

Регуляторы температур в зависимости от способа управления бывают пороговыми, управляющие температурой с помощью полностью открытой или полностью закрытой заслонки (пример – автомобильный термостат), и с пропорционально дифференциальным управлением (PID), позволяют плавно управлять температурой в рабочем диапазоне.

Управление регуляторами в системах автоматизации вентиляции осуществляется из щитов управления.

Щиты автоматизации

Работа автоматизированной системы, ее удобство, надежность и безопасность эксплуатации напрямую зависят от алгоритмов управления процессом (специалистов, выполнивших проектирование и наладку), а также от возможностей комплектующих изделий. Алгоритмы реализуются на программном уровне и «зашиваются» в свободно программируемые контроллеры, установленные в щитах автоматизации.

При подключении датчиков к щиту автоматизации учитывают тип сигнала, передаваемого преобразователем (аналоговый, дискретный или пороговый). Аналогично выбираются и модули расширения, управляющие приводами устройств.

Щиты вентсистем бывают силовые, управляющие или совмещенные, если система небольшая. Щиты автоматики для вентиляции обеспечивают:

  • Включение и выключение системы вентиляции;
  • Индикацию состояния оборудования;
  • Защиту от неправильного подключения питающего напряжения и короткого замыкания;
  • Управление производительностью вентиляционной установки;
  • Индикацию состояния воздушных фильтров;
  • Защиту от перегрева электродвигателей;
  • Защиту калорифера от замерзания;
  • Поддержку и контроль температуры воздуха на входе вентиляционной установки и в помещении;
  • Возможность применения временных ручных алгоритмов управления.

Проектирование системы автоматизации вентиляции и кондиционирования

Система автоматизации вентиляции и кондиционирования является одним из наиболее сложных проектов инженерных систем здания.

Это связано с большим количеством точек контроля и исполнительных устройств в системе и учетом нескольких режимов работы системы, включая зимний и летний. Предусматривают:

  • Автоматическое управление производительностью установок систем вентиляции;
  • Сблокированную работу двигателей приточно-вытяжных вентиляторов и заслонок на воздухозаборе;
  • Автоматическую регулировку температуры подающего воздуха;
  • Автоматическое отключение систем при аварийных ситуациях;
  • Защиту калориферов от замораживания;
  • Разные режимы пуска в зависимости от сезона;
  • Контроль параметров внешней и внутренней среды, и параметров техпроцесса- температур, перепадов давления, влажности и т.п.

Проект разрабатывается по заданию технологов – специалистов, разработчиков проекта вентиляции и кондиционирования. В стандартный комплект чертежей включают:

  • Общие данные;
  • Структурные схемы, при необходимости;
  • Задание на программирование системы;
  • Функциональные схемы автоматизации для каждой из подсистем – по ним будут собираться щиты автоматизации;
  • Схемы связи контроллеров системы автоматизации;
  • Схемы внешних соединений для щитов автоматизации (фактически это таблица соединений);
  • Схемы связи со смежными системами автоматизации;
  • Принципиальные электрические схемы щитов автоматизации, двигателей насосов или вентиляторов;
  • Принципиальные схемы питания щитов автоматизации;
  • План расположения оборудования и проводок систем автоматизации;
  • Кабельные журналы;
  • Монтажные схемы;
  • Спецификация оборудования и проводок.

Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

Щит автоматизации системы вентиляции должен обеспечивать работу в следующих режимах:

Ручном. В этом случае управление системой осуществляется вручную.

Автоматическом автономном, с передачей данных в систему диспетчеризации. В этом случае включение и выключение происходит автономно, без учета показаний смежных инженерных систем, при этом уведомления о работе системы передаются диспетчеру.

Автоматический в составе автоматизированной системы управления зданием. При таком режиме работа вентиляции синхронизирована с другими системами жизнеобеспечения здания. Все системы здания, управляемые по разработанным алгоритмам, формируют систему автоматизации и диспетчеризации здания.

Иногда, хитрые интеграторы представляют автоматическую автономную систему как полностью автоматическую. Заказчик узнает об этом, когда начинает получать счета за коммунальные услуги с суммами, выше ожидаемых.

Управление системой осуществляется по протоколам управления здания. Наиболее известные это LonWorks, ModBus, BACnet.

Управление вентиляцией при пожаре

При проектировании систем автоматики вентиляции, учитывают их работу в случае пожара.

Согласно СП 60.13330.2012, для зданий и помещений, оборудованных автоматическими установками пожаротушения или автоматической пожарной сигнализацией, следует предусматривать автоматическое действия электроприемников систем вентиляции:

  • Отключение при пожаре в помещении или в системе вентиляции, которое может производиться централизованно, прекращая подачу электропитания и обеспечивая закрытие противопожарных клапанов на распределительные щиты систем вентиляции, или индивидуально для каждой системы с целью предотвращения распространения огня по воздуховодам и остановки притока кислорода к пламени;
  • Включения систем противодымной вентиляции на путях эвакуации и в зонах безопасности, или противодымной вентиляции в помещении, где произошел пожар, в зависимости от проектных решений;
  • Включения систем для удаления газа и дыма после пожара.

Источник: http://rina.pro/napravleniya-deyatelnosti/sistemy-avtomatizacii/general-ventilation

Управление вентиляцией по датчику CO2

Автоматическое управление вентиляцией в помещении

Воздух является смесью газов, в котором углекислый газ (CO2) занимает по количеству лишь четвертое место, однако важнейшее значение для всего живого.

Измерить концентрацию углекислого газа достаточно легко, а данные о количестве CO2 позволяют косвенно судить о содержании других веществ и использовать эти данные для анализа качества воздуха.

Основной единицей измерения концентрации углекислого газа являются промилле (ppm).

При небольшом повышении уровня CO2 человек ощущает духоту, усталость, сонливость, невозможность сосредоточиться, потерю внимания, раздражительность, снижение работоспособности и т. д. Если уровень CO2 будет повышаться дальше, то наступают проблемы с дыханием, удушье, учащенный пульс, головокружение, а кто-то вообще падает в обморок.

В замкнутых помещениях с недостаточной вентиляцией человек достаточно активно поглощает кислород (O2), при этом выдыхая большое количество углекислого газа, и если к перепадам содержания в воздухе кислорода человек мало восприимчив, то перепады содержания CO2 чувствуются каждой клеткой (и это не метафора). Связанно это с тем, что процесс газообмена O2 и CO2 в легких происходит за счет пассивной диффузии через мембрану клетки, а диффузионная способность CO2 в 25-30 раз выше, чем у O2, именно поэтому к изменениям концентрации CO2 в воздухе, человек очень чувствителен.

Датчик СО2 для CO2 системы TURKOV

Пребывание в помещении с высоким содержанием СО2 ведет к негативным последствиям, поэтому так важно уделять внимание вентиляции помещений. Удобным и эффективным методом регулирования воздухообмена является использование датчика СО2 от TURKOV. 

Как видим наиболее вредным является долговременное пребывание в помещениях с высоким содержанием CO2 , именно поэтому особое внимание надо уделять домашней вентиляции и вентиляции рабочих мест. При этом наиболее правильный и энергоэффективный метод регулирования воздухообмена, это регулирование по датчику СО2.

Детектор СО2 максимально точно (+/- 25 РРМ) контролирует уровень СО2 в помещении в автоматическом режиме, при этом не требуя дополнительной регулировки и настройки.

Как это работает? По датчику CO2, который установлен в вытяжном канале, автоматика распознает уровень CO2 в помещении и автоматически поддерживает его оптимальный уровень путем увеличения или уменьшения оборотов вентилятора. Приточный и вытяжной вентиляторы при этом работают синхронно. Диапазон регулирования вентиляторов от 0 до 100%.

Датчик СО2

Сенсорный пульт с датчиком СО2 / SENSOR + CO2

Режимы работы:  ON – открытие заслонки на 100%; OFF – полностью закрытая заслонка;

AUTO – пропорциональное регулирование от 0 до 100%.

Для поддерживания необходимого уровня СО2 в помещении был разработан пульт с датчиком СО2, который предназначен для жилых помещений любой площади. Датчик СО2 встроен в пульт. Вы можете разместить пульт в любом удобном для вас месте. 

Технические характеристики датчика сенсорного пульта СО2:

Напряжение питания 220В
Габариты, А*В*С, мм. 130*80*24
Потребляемая мощность Не более 2В
Напряжение питания 220В
Датчик СО2 Встроенный
Диапазон измерения СО2 От 0оС до +50оС
2 аналоговых выхода 0-10 В для управления заслонкой/вентилятором
Контакты для управления заслонкой Нормально разомкнутый
Диапазон рабочих температур 0/+50оС

Пульт с датчиком СО2

Варианты управления по датчику CO2

Следует обратить внимание, что возможно два типа регулирования воздухообмена по датчику CO2.

1. Вентилирование одним агрегатом нескольких помещений.

Вентилирование нескольких изолированных объемов воздуха, например квартиры, дома, нескольких офисов. Применяется в основном на бытовой линейке оборудования CAPSULE и I-VENT, а так же на приточно-вытяжных агрегатах ZENIT, ZENIT HECO. Для каждого помещения нам потребуется:

  • Пропорциональный клапан на приточном канале
  • Пропорциональный клапан на вытяжном канале (Если вытяжка в каждом помещении)
  • Датчик CO2 для каждого помещения или вытяжного канала каждого помещения.
  • VAV-система на агрегате (устанавливается заводом-изготовителем).

При появлении в помещении человека, датчиком CO2 будет регистрироваться повышение уровня CO2.

Пропорциональный клапан с электроприводом будет регулировать воздухообмен на основании показаний именно своего датчика CO2.

Такой вариант управления позволит максимально точно поддерживать качество воздуха в помещении, не позволяя появиться чувству нехватки воздуха, и не создавая излишнего воздухообмена.

Пример работы вентиляции по датчикам CO2 установленным в помещениях:

В помещении №2 находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 25 м³/ч, В помещении №1 же находятся два человека и для компенсации требуется подавать уже 75 м³/ч.

Если из помещений выйдет по одному человеку, то в помещении №2 выделение CO2 прекратится полностью, клапан закроется, и вентилирование помещения прекратится.

В помещении №1 выделение CO2 сократится, и агрегат постепенно снизит воздухообмен помещения №1 до 25 м³/ч.

ВНИМАНИЕ!!!

Применение одного датчика CO2 в вытяжном канале при наличии нескольких помещений нежелательно. Датчик CO2 будет регистрировать суммарную концентрацию углекислого газа и в обоих помещениях одинаково увеличивать воздухообмен. В результате в верхнем помещении воздухообмена недостаточно для компенсации повышения уровня CO2, а в нижнее подается излишнее количество воздуха.

2. Вентилирование одним агрегатом одного помещения

Вентилирование одного изолированного объема воздуха, например офиса, спортзала, производственного помещения, квартиры-студии.

В этом случае нам потребуется только датчик CO2 установленный в вытяжном канале (устанавливается заводом-изготовителем).

Воздухообмен будет автоматически регулироваться для поддержания требуемого уровня CO2, независимо от изменения количества людей в помещении, а так же от их рода деятельности. 

Данный вариант регулирования применяется в основном на промышленной линейке оборудования серии Zenit, Zenit HECO, CAPSULE и даже в установках i-Vent. Применение данной системы позволит организовать максимально энергоэффективную систему вентиляции, с минимальными эксплуатационными издержками и полностью автоматическим управлением.

Пример работы вентиляции по датчикам CO2 установленным в вытяжном канале:

В помещении находится один человек, и для компенсации повышения концентрации CO2 достаточно подавать в помещение 50 м³/ч, по мере увеличения в помещении количества людей увеличивается регистрируемый уровень CO2, и агрегат автоматически увеличивает количество воздуха, которое требуется подавать в помещение, для компенсации повышения уровня CO2.

Расчет системы вентиляции по СО2

Это один из вариантов расчета системы вентиляции, но, к сожалению, применяется достаточно редко, так как систем умеющих регулировать воздухообмен по датчику CO2 не слишком много. Для расчета нм понадобится знать следующие данные:

  1. Концентрация CO2 на улице.
  2. Расписание пребывания людей в обслуживаемых помещениях.
  3. Тип физической активности в обслуживаемых помещениях.
  4. Требуемый поддерживаемый уровень CO2.

Формула расчета воздухообмена для компенсации выделения CO2 одним человеком: L=(Gx550)/(X2-X1) 

где:

  • L – воздухообмен, м3/ч;
  • X1 – концентрация CO2 в наружном (приточном) воздухе, ppm;
  • X2 – допустимая концентрация CO2 в воздухе помещения, ppm;
  • G – количество CO2 выделяемое одним человеком, л/час;
  • 550 – преобразование значений X1 и X2 из ppm в г/м3.

Данные для G и концентрации CO2 на улице подбираются из таблиц.

Физическая активность

Выделение СО2
Сон 12 л/час
Сидячая работа 15 л/час
Офисная работа 18 л/час
Среднее 23 л/час
Ходьба 33 л/час
Легкая механическая работа 36 л/час
Тяжелая работа 63 л/час 

 

Концентрация СО2 на улице
Для сельских населенных пунктов 332 ppm
Для малых городов (до 300 тыс. жителей) 409 ppm
Для больших городов (свыше 300 тыс. жителей) 511 ppm 

Пример расчета квартиры с количеством проживающих 3 чел.

Количество людей 3 шт
Выделение СО2 одним человеком  18 л/час
Допустимая концентрация СО2 600 ppm
Концентрация СО2 на улице 511 ppm
Требуемый воздухообмен 334 м3/ч 

Для данных условий наиболее подходящим будет агрегат Zenit-350 Heco.

Если составить расписание дня, то можно будет увидеть картину изменения воздухообмена в течение дня, в зависимости от выделения CO2 в квартире.

Как видим даже по усредненному расписанию график изменения воздухообмена весьма существенный, в реальности же система постоянно регулирует воздухообмен, практически не имея на графике «полок». При этом, если агрегат подобран верно, в данном случае это Zenit-350 Heco, то значение CO2 в квартире всегда будет неизменно.

*Для расчета не принципиально, какой тип управления агрегатом по CO2 применяется. Это может быть как датчик в вытяжном канале, если это вентиляция квартиры студии, так и комнатные датчики CO2 совместно с VAV-системой.

ПВУ Zenit HECO

в социальных сетях:

Источник: https://turkov.ru/info/technical/upravlenie_ventilyatsiey_po_datchiku_co2/

Автоматика для вентиляции: элементы и оборудование

Автоматическое управление вентиляцией в помещении

Автоматические устройства контроля за работой вентиляционной системы предназначены для поддержания комфортных условий в производственных и жилых помещениях.

Современные системы – это комплекс автоматического управления микроклиматом помещения. Для поддержки слаженной работы всех механизмов и устройств, разработчики устанавливают сложную аппаратуру с различными датчиками и реле. Только такое обустройство щита автоматики позволяет корректировать действие всей системы вентиляции.

Шкаф управления вентиляцией

Автоматизация систем вентиляции монтируется для решения проблем при использовании вентиляционного оборудования и механизмов.

Основные задачи, выполняемые автоматикой вентиляции

При возникновении некоторых неисправностей, происходит срабатывание автоматического управления вытяжки, обеспечивается высокая безопасность:

  1. Решение задач по управлению и мониторингу нормальной работы схемы. Должен устанавливаться сигнализатор аварии, опасных режимах эксплуатации оборудования. Новые разработки позволяют управлять работой схемы удаленно. Оператор наблюдает за функционированием устройства, может вносить коррективы, устанавливать оптимальные режимы.
  2. Произведение индивидуального анализа и мониторинга работы каждого отдельного механизма и общей деятельности схемы вентиляции. Датчики устройства доставляют информацию, автоматика производит исследование ситуации и вносит корректировки в работу вентиляционного оборудования. В случае аварии, подается сигнал на кнопку пуска для выключения оборудования.
  3. Осуществляет защиту клапанов и водяного контура нагрева от низких температур, не позволяет опускаться температуре до критического уровня.
  4. Обеспечивает возможность управления процессом вентилирования помещения, переключая режимы эксплуатации оборудования. При перепадах нагрузки, температуры в помещении – система управления способна понижать скорость вращения вентиляторов, полностью выключать оборудование и поддерживать комфортные условия в обслуживаемом помещении.
  5. В случае короткого замыкания и других аварийных ситуаций, производит блокировку механизмов, для исключения пожара и поражения людей током.

Важно. В организации безопасной работы вентиляционной системы автоматика выполняет главную роль – позволяет проводить управление процессом без участия человека, экономя при этом значительные средства.

Сложность выполняемой работы зависит от укомплектованности щита автоматического устройства.

Оборудование для системы автоматического управления вентиляцией

Выпускается ряд типов приборов, устройств и датчиков для создания автоматики управления вентиляцией. Для управления отдельным процессом, предназначены механизмы контроля. Но устройства не только контролируют весь процесс, но и управляют эксплуатацией одного участка схемы.

Автоматизированная система управления приточной вентиляцией

Поэтому, в состав автоматики входят десятки различных реле, датчиков и других приборов.

Важно. Как правило, для обслуживания вентиляции используются электронные приборы. Но для контроля над температурой нагрева или охлаждения воздуха устанавливают механический узел обвязки.

В состав автоматического устройства управления системой вентиляции, обязательно входят следующие приборы:

  • регулятор температуры воздушных масс;
  • прибор регулировки величины оборотов вентилятора;
  • в узле обвязки устанавливается датчик нагрева воды и воздуха;
  • привод управления запорным клапаном.

Но данные приборы производят локальное регулирование работы системы или делают замеры. Контроль и определение общего уровня безопасности, всего цикла работы вентиляционной системы, осуществляется с помощью шкафа центрального управления устройства вентиляции.

Сложность системы можно понять, ознакомившись с полным списком оборудования данного устройства. Количество определенных датчиков или реле может быть значительным, а некоторые приборы представлены в единственном числе. Рассмотрим устройство некоторых щитов автоматического управления.

Устройство вентиляционной щитовой для системы с установкой электрического калорифера

Щит управления приточной вентиляцией с электрическим калорифером

Для обустройства данной щитовой используются следующие составляющие автоматики:

  • регулятор установки температурного режима (одним из лучших вариантов будет использование шведских деталей компании Regin);
  • группа управления вентиляторами приточной, вытяжной системы. Лучшим вариантом является установка приборов, осуществляющих ступенчатую или плавную регулировку;
  • индикаторы использования вентиляционной установки;
  • группа приборов для поддержания номинальной температуры в помещении;
  • выключение подачи электричества на калорифер, при отключении приточных вентиляторов;
  • группа приборов для отключения, индикации загрязнения воздушных фильтров;
  • устройство защитного отключения при перегреве системы;
  • система автоматического выключения при пиковых токах короткого замыкания, значительных перегрузках.

Щитовая для обслуживания автоматики с водяными калориферами

Автоматика приточной вентиляции призвана обеспечивать безопасность при эксплуатации приборов подогрева воздуха, вентиляции помещения. Основной прибор щита – это контроллер AQUA шведского производства. Остальные составляющие устанавливают для решения следующих вопросов:

  • производят управление вентиляторными устройствами;
  • поддерживают заданную температуру воздушных масс;
  • переключают режимы эксплуатации;
  • управляют приводами клапанов с возвратными пружинами, обеспечивающими закрытие воздухозаборными клапанами, в случае выключения вентиляторных установок, коротком замыкании фазы на корпус;
  • управляют работой насоса циркуляции воды в калорифере, устанавливаемом в узле обвязки;
  • осуществляют контролирование за температурой воды в обратной магистрали при разных режимах работы, при выключении калорифера;
  • выключают подачу энергии при загрязнении воздушного фильтра.

Автоматизация вентиляции позволяет решать сложные задачи в любых условиях и при различных режимах эксплуатации оборудования. Каждая схема вентилирования воздуха монтируется с автоматической системой управления процессом.

В заключение, отметим основные моменты, на которые следует обращать пристальное внимание при покупке приборов оснащения щита автоматического управления устройством вентилирования зданий.

Основной критерий выбора – это надежность комплектующих.

Обязательно попросите у менеджера сертификат качества данных приборов, а также гарантии компании изготовителя щитов вентиляции и каждой отдельной детали.

Обращайте внимание на наличие производственной базы для выполнения ремонта, гарантийного сервисного обслуживания вентиляционного оборудования, схемы автоматического управления процессом.

Каждый прибор должен иметь паспорт, инструкцию, схему подключения. Сегодня на рынке вентиляционного оборудования, различные производители предлагают разнообразный ассортимент комплектующих и схем устройств щитов вентиляции. Сделав правильный выбор, качественно выполнив монтаж автоматических шкафов, вы получаете надежное, безопасное оборудование, на достаточно долгое время.

Источник: https://ventkam.ru/ventilyatsiya/avtomatika

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.